Geim, AK & Novoselov, KS The rise of graphene. nat. mother 6183–191 (2007).
Wang, QH, Kalantar-Zadeh, K., Kis, A., Coleman, JN & Strano, MS Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. nat. Nanotechnol. 7699–712 (2012).
Li, L. et al. Black phosphorus field-effect transistors. nat. Nanotechnol. 9372–377 (2014).
Novoselov, KS et al. Electric field effect in atomically thin carbon films. science 306666–669 (2004).
Fan, Q. et al. Biphenylene network: a nonbenzenoid carbon allotrope. science 372852–856 (2021).
Kolmer, M. et al. Rational synthesis of atomically precise graphene nanoribbons directly on metal oxide surfaces. science 369571–575 (2020).
Yu, H., Xue, Y. & Li, Y. Graphdiyne and its assembly architectures: synthesis, functionalization, and applications. Adv. mother 31e1803101 (2019).
Bakharev, PV et al. Chemically induced transformation of chemical vapor deposition grown bilayer graphene into fluorinated single-layer diamond. nat. Nanotechnol. 1559–66 (2020).
Toh, CT et al. Synthesis and properties of free-standing monolayer amorphous carbon. nature 577199–203 (2020).
Cui, X. et al. Rolling up transition metal dichalcogenide nanocrolls via one drop of ethanol. nat. common 91301 (2018).
Wan, J. et al. Ultra-thin solid electrolyte interphase evolution and wrinkling processes in molybdenum disulfide-based lithium-ion batteries. nat. common 103265 (2019).
Hirsch, A. The era of carbon allotropes. nat. mother 9868–871 (2010).
Simon, P. & Gogotsi, Y. Materials for electrochemical capacitors. nat. mother 7845–854 (2008).
Cao, Y. et al. Unconventional superconductivity in magic-angle graphene superlattices. nature 55643–50 (2018).
Zhai, HJ et al. Observation of an all-boron fullerene. nat. Chem. 6727–731 (2014).
Jena, P. & Sun, Q. Super atomic clusters: design rules and potential for building blocks of materials. Chem. Rev. 1185755–5870 (2018).
Blank, VD et al. High-pressure polymerized phases of C60. carbon 36319-343 (1998).
Okada, S. & Saito, S. Electronic structure and energetics of pressure-induced two-dimensional C60 polymers. Phys. Rev. B 591930–1936 (1999).
Xu, CH & Scuseria, GE Theoretical predictions for a two-dimensional rhombohedral phase of solid C60. Phys. Rev. Lett. 74274-277 (1995).
Makarova, TL et al. Magnetic carbon. nature 413716–718 (2001).
Tanaka, M. & Yamanaka, S. Vapor-phase growth and structural characterization of single crystals of magnesium doped two-dimensional fullerene polymer MgtwoÇ60. Cryst. Growth Des. 183877–3882 (2018).
Pekker, S. et al. Single-crystalline (KC60)no: a conducting linear alkali fulleride polymer. science 2651077–1078 (1994).
Porezag, D., Pederson, MR, Frauenheim, T. & Kohler, T. Structure, stability, and vibrational properties of polymerized C60. Phys. Rev. B 5214963–14970 (1995).
Haddon, RC et al. Conducting films of C60 and C70 by alkali-metal doping. nature 350320-322 (1991).
Wågberg, T. & Sundqvist, B. Raman study of the two-dimensional polymers Na4Ç60 and tetragonal C60. Phys. Rev. B 65155421 (2002).
Long, VC et al. Far-infrared vibrational properties of high-pressure high-temperature C60 polymers and the C60 dimmer Phys. Rev. B 6113191–13201 (2000).
Chen, Y. et al. Black arsenic: a layered semiconductor with extreme in-plane anisotropy. Adv. mother 30e1800754 (2018).
Xia F., Wang H. & Jia Y. Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics. nat. common 54458 (2014).